پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

نویسندگان

  • زهرا صادقی دانشکده اقتصاد مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
چکیده مقاله:

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار گرفته می­شوند. در این مقاله از آمار سال 1374 تا 1390 استفاده شده است. بمنظور انجام بررسی،  داده­های سالانه به داده­های ماهانه تبدیل شدند. نتایج مطالعه نشان دادند که از نظر معیار MAPEمقدار تابع خطا برای مدل ARIMA،0771/0بیش‌ترین مقدار خطا و مدل شبکه عصبی RBF با خطای 5-10× 9328/7 کم‌ترین خطا و بهترین مدل‌سازی را دارد. افزون بر این، با روش RBF ،دقیق­ترین روش شناخته‌شده این پژوهش، پیش­بینی تولید آبزیان دریایی برای دو سال آینده انجام شد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی

هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...

متن کامل

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

متن کامل

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

متن کامل

پیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی

مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته می‌شود، یکی از پرکاربردترین مدل‌ها در پیش‌بینی سری‌های زمانی است. اما پیش­ فرض اصلی این مدل خطی بودن سری­های زمانی می­باشد. از سوی دیگر شبکه­ی عصبی یک تخمین زننده­ی عمومی است که الگو­های غیر خطی را بسیار خوب مدل­سازی می­نماید. دانستن الگوی داده­ها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...

متن کامل

پیش بینی مصرف کاغذ چاپ و تحریر در ایران با استفاده از روش های کلاسیک و شبکه عصبی مصنوعی

هدف از این تحقیق پیش بینی روند مصرف کاغذ چاپ و تحریر در ایران طی یک دوره زمانی 5 ساله با استفاده از روشهای کلاسیک و نوین پیش بینی است. به منظور انجام این پیش بینی، در ابتدا پیش بینی پذیر بودن سری زمانی با استفاده از آزمون های دوربین- واتسون و گردش مورد بررسی قرار گرفت. سپس به مقایسه مدل شبکه عصبی مصنوعی (پرسپترون چندلایه (MLP)) و مدل های کلاسیک تک متغیره و چندمتغیره از قبیل مدل های تک متغیره هم...

متن کامل

مطالعه تطبیقی روش های ARIMA و شبکه های عصبی مصنوعی در پیش بینی نیاز داخلی برق کشور

  آگاهی از میزان تقاضای انرژی برق در هر دوره، به منظور برنامه ریزی دقیق، برای اعمال سیاست گذاری های لازم، امری ضروری است. از این رو پیش بینی تقاضای آن برای بخش های مختلف اقتصادی حائز اهمیت است. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی، در زمینه تجزیه و تحلیل و مدل سازی روابط غیرخطی یکی از ابزار قدرتمند به حساب می آید که استفاده از آن در سال های اخیر در اقتصاد کلان گسترش یافته است...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 31

صفحات  145- 166

تاریخ انتشار 2016-10-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023